Type and Order Convexity Ofmarcinkiewicz and Lorentz Spaces and Applications
نویسنده
چکیده
We consider order and type properties of Marcinkiewicz and Lorentz function spaces.We show that if 0 < p < 1, a p-normable quasi-Banach space is natural (i.e. embeds into a q-convex quasi-Banach lattice for some q > 0) if and only if it is finitely representable in the space Lp,∞. We also show in particular that the weak Lorentz space L1,∞ do not have type 1, while a non-normable Lorentz space L1,p has type 1. We present also criteria for upper r-estimate and r-convexity of Marcinkiewicz spaces. 2000 Mathematics Subject Classification. 46A16, 46B03, 46B20, 46E30.
منابع مشابه
From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups
The Lorentz transformation of order $(m=1,n)$, $ninNb$, is the well-known Lorentz transformation of special relativity theory. It is a transformation of time-space coordinates of the pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and $n$ space dimensions ($n=3$ in physical applications). A Lorentz transformation without rotations is called a {it boost}. Commonly, the ...
متن کاملConvexity and Geodesic Metric Spaces
In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...
متن کاملOn difference sequence spaces defined by Orlicz functions without convexity
In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.
متن کاملIndices, Convexity and Concavity of Calderón-lozanovskii Spaces
In this article we discuss lattice convexity and concavity of Calderón-Lozanovskii space Eφ , generated by a quasi-Banach space E and an increasing Orlicz function φ. We give estimations of convexity and concavity indices of Eφ in terms of Matuszewska-Orlicz indices of φ as well as convexity and concavity indices of E. In the case when Eφ is a rearrangement invariant space we also provide some ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005